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The effect of fibre modulus and cohesive energy on critical fibre length and radius in ceramic- 
fibre-reinforced brittle composites has been investigated employing both analytical theory and 
computer simulation. The theory consists of a shear-lag analysis in which an energy failure 
criterion is incorporated. The simulation consists of a two-dimensional computer model based 
upon a discrete network of grid points. Failure is also defined in terms of an energy criterion, 
where the energy is calculated on the basis of a two- and three-body interaction between the 
grid points. Both theory and simulation show that a minimum critical aspect ratio is found as a 
function of the elastic moduli ratio, Ef/Ern, with a divergence occurring at both low- and high- 
modulus values. As the modulus ratio is increased, there is a transition in failure mechanism 
from tensile-dominated failure in the matrix to shear-dominated failure at the fibre-matrix 
interface. In addition, families of critical aspect ratio curves are obtained as a function of the 
cohesive energy ratio, Uf/Urn. Larger cohesive energy ratios shift the critical aspect ratio curve 
to larger values. These features potentially explain trends in the experimental results reported 
by Asloun et aL, where the critical fibre aspect ratio was measured for fibre/matrix systems 
having different modulus and toughness ratios. 

1. I n t r o d u c t i o n  
Optimum mechanical properties in composite mater- 
ials depend on the efficiency of stress transfer from the 
matrix to the fibres. The efficiency of the transfer 
determines a critical length, Ic [1-5] for the fibre above 
which it can be loaded to its full capacity, therefore 
strengthening the material. Below this critical length 
the loading efficiency of the fibre decreases and the 
fibre rather acts as a defect in the material. Hence it is 
very important from a technological point of view to 
understand how the critical length depends upon the 
stress transfer to the fibres. Factors which are known 
to influence the stress transfer are the structure and 
properties of the matrix, the fibre and the interface. In 
particular, interface properties are known to be im- 
portant, because the stresses induced by the differ- 
ences between the elastic properties of the matrix and 
the fibres have to be transmitted through the interface. 
The overall structure and properties of the matrix, 
fibre and interface can be characterized by an elastic 
modulus, E~, a cohesive energy, Us, and a viscoelastic 
coefficient, rl~, for each of these three components, 
namely the matrix (Em, Urn, fir,), the fibre (El, Uf, rl O 
and the interface (Ei, Ui, 11j). 

The problem of stress transfer to the fibre has been 
treated analytically by Cox [6] and is now referred to 
as the shear-lag theory. The shear-lag theory makes 
use of the following assumptions. 

1. Both the fibre and the matrix remain elastic. 

2. The interface is infinitesimally thin. 
3. There are no strain discontinuities across the 

interface, i.e. the bond between the matrix and the 
fibre is perfect. 

4. There is no bonding between the matrix and the 
end faces of the fibre. 

Cox's approach has two major drawbacks. The first 
one is that it does not take properly into account the 
stress amplification effects near the fibre tips. Finite 
element analyses [7-10] have shown that the critical 
length is highly dependent on assumptions made 
about local stress concentration. Experimental studies 
[11, 12] suggest that shear-lag analysis underestimates 
the shear stress concentration at the end of the fibre. 
Furthermore, these studies also show that state of 
stress as well as stress concentration depend also on 
fibre-end geometry. The second drawback is that end 
face adhesion is not taken into consideration. Of the 
two limitations, stress amplification effects would 
seem even more serious than neglecting the adhesion 
across the end face of the fibre. This is because in many 
experimental systems (e.g. epoxy/fibreglass), the fibres 
are usually coated with an adhesive substance and 
then chopped. 

The definition of a critical length, lc (or critical 
aspect ratio l~/d, where d is the fibre diameter), in short 
fibre composites is somewhat arbitrary. Fig. 1 illustra- 
tes the tensile stress along a single fibre embedded in a 
matrix. L is the length of the fibre, lc/2 is half the 
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Figure 1 Plot of the tensile stress, ~e, as a function of the x 
coordinate along the fibre for a fibre of length L taken from one 
computer simulation (L = 27). The tensile stress at the centre of the 
fibre, ~f (L/2) and at half the critical length, % (lc/2) is illustrated. 

critical length (also called the ineffective length), 
of (L/2) is the stress at the fibre mid-point and of(It/2) 
is the fibre stress at a distance I~/2 from the fibre end- 
point. The critical length is usually defined [2] as the 
length beyond which the fibre can achieve maximum 
strain (strain applied to the composite, ao) and max- 
imum stress (~o Ee). Another approach is to define the 
critical length as the distance from the fibre end to the 
point at which the fibre stress is some specified frac- 
tion of the stress in a fibre of infinite length. Rosen [13, 
14] used an approach based on the shear-lag theory 
with a fraction of 0.9 and obtained the following 
expression for the critical aspect ratio l,/d: 

3 = Gm /)~/~ / (1) 

where G m is the shear modulus of the matrix and is 
equal to Era/2(1 + Vm), Vm is the Poisson's ratio of the 
matrix and vf is the volume fraction of fibres. From the 
above definitions, one can infer from Equation 1 that 
the critical aspect ratio is proportional to the square 
root of the ratio of the elastic moduli, Ef/E m 

l~ ( E f ~  1/2 
3 oc \ ~ )  (2) 

Galiotis et al. [15] obtained a result similar to Equa- 
tion 2 for the regime Ef>>Em by using the shear-lag 
theory and defining the critical length to be the length 
at which of(/c/2 ) = of(L/2)/e where e is the natural 
logarithm. Termonia [16, 17] defined the critical 
length to be the length at which the fibre strain is 97 % 
of the strain of a fibre of infinite length. Using a finite 
difference technique which avoids the problems of 
shear-lag theory concerning stress concentration and 
end-face adhesion, it was found that 

lc Ef 
- < - -  ( 3 )  
d Em 

i.e. the critical aspect ratio is linearly related to the 
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ratio of the elastic moduli, E f / E  m. Because the mode 
of fibre loading assumed by Cox's shear-lag theory 
and Termonia [16, 17] is not quite the same (pure 
shear loading versus a mixture of tensile and shear 
loading), it is not surprising that the functional de- 
pendences obtained for the critical length are different. 
In a recent paper by Asloun et al. [18], the critical 
aspect ratio predicted by the shear-lag theory and 
Termonia are compared to experimental results for a 
variety of systems. Most systems seem to agree with 
the predictions based on the shear-lag theory for large 
values of the ratio Ef/Em, while only a few seem to 
follow Termonia's prediction [16, 17], indicating that 
indeed stress concentration at the fibre ends is negli- 
gible. However, the data also seem to show an upward 
trend at lower values of the ratio Ef/Em, in disagree- 
ment with both the predictions of Termonia [16, 17] 
and the shear-lag theory (see Fig. 2). This trend is 
described by Asloun et al. [18] in terms of a scatter of 
the data, due to variations in adhesion. Asloun et al. 
[18] pointed out that such variations in adhesion are 
experimentally very difficult to check. Moreover, the 
data do not collapse on one single curve for Ef>>E m 
but rather on two such distinct curves, corresponding 
to systems with thermosetting/thermoplastic matrices 
and to systems with elastomeric matrices respectively. 
The critical length for elastomeric matrices was found 
to be about seven times smaller than the critical length 
for thermosetting or thermoplastic matrices. There- 
fore, this experimental study concluded that the 
nature of the matrix plays an unexpected role in stress 
transfer. 

The discrepancies reported by Asloun et al. [18] 
suggest that additional parameters may be needed to 
describe properly load transfer in short fibre com- 
posites. The theoretical approaches reported in the 
literature [1-6] do not take explicitly into considera- 
tion the cohesive energy of the fibre and the matrix, 
and this factor can indeed modify the functional de- 
pendence of the fibre critical length, lc. This work, 
therefore, proposes to further our understanding of 
the nature of stress transfer by studying the critical 
length as a function of two parameters; namely, the 
ratio of the elastic moduli, Ef/Em, and the ratio of the 
cohesive energies, Uf/Urn. The cohesive energy para- 
meter is brought into this study by generalizing the 
failure mechanism to incorporate many possible fail- 
ure modes, i.e. we introduce an energy-failure criterion 
in the equations of shear-lag theory described and in a 
computer model described. The simulation results are 
also presented. 

2. Theory 
The results from this section will be compared to our 
two-dimensional computer model, therefore we pre- 
sent those results in three- and two-dimensional form. 
Let us consider a single fibre of elastic modulus, El, 
radius, rf, and cohesive energy, Uf, embedded in a soft 
matrix of elastic modulus, Era, Poisson's ratio, Vm, and 
cohesive energy, Urn, as illustrated in Fig. 3. R is half 
the interfibre spacing, ~(x, r) is the shear stress in the 
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Figure 2 Critical aspect ratio, S~, as a function of Ef/E m in logarithmic scale. The data are taken from the literature by Asloun et al. [18]. 
( - - )  The theoretical prediction of shear-lag theory [3] (Equation 1) and of Termonia [16], ( - - )  experimental fittings. 
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Figure 3 Fibre embedded in the matrix. The fibre has length L, 
radius rf. The origin of the coordinate system corresponds to one of 
the fibre ends and the fibre axis is along the x direction, r~ is the 
shear stress at the fibre-matrix interface, r is the shear stress at a 
distance r = (y2 + z2) in (cylindrical symmetry is assumed) and R is 
a distance large enough so the strain on the matrix beyond the 
distance R is the same as the applied strain. 

matrix a distance r = (yZ+ z2)~]2 (assuming cylin- 
drical symmetry) above a given x coordinate along the 
fibre, r(x, re)= zi(x) is the shear stress at a given x 
coordinate along the fibre-matrix interface and 
d = 2rf is the diameter of the fibre. According to Cox's 
assumptions presented in the previous section, we can 
balance the shear forces in the matrix r(x, r) with the 
shear forces at the fibre-matrix interface, %(x). For a 
three-dimensional system, one obtains 2~rfri(x)dx 
= 2nrz(x, r)dx or ~(x, r) = rfT, i(x)/r.  Using r = Gin?m, 

where Ym = du/dz is the shear strain and u = u(x, r) is 
the displacement we obtain 

du(x, r) "c(x, r) rr'ci(x ) 
- - ( 4 )  

dr G m rGm 

We then proceed to integrate the left-hand side of 
Equation 4 from u(x, rf), the fibre displacement to 
u(x, R), the matrix displacement at a distance, R (see 
Fig. 3), and the right-hand side of Equation 4 from r r 
to R with the result 

r/el(x) 
u(x, R) - u(x, rf) - ln(R/rf) (5) 

Gm 

and 

[u (x ,  R)  - -  u(x ,  r f ) ]  E m 
�9 i(x) = (6) 

2re(1 + vm)ln(R/rf) 

Balancing the shear forces at the interface with the 
tensile force in the fibre over an element of length dx 

dof (x )  2Ti(x ) 
- (7) 

dx rf 

in three dimensions, and differentiating with respect to 
x results in the following expression: 

d2of(x)  Em[o ' f (x  ) - EmEf] 

dx 2 - r2Ef(1 + vm)ln(R/rf ) (8) 

where E m = du(x, R)/dx and ef --- du(x, rO/dx 
= of(x)/Ef. Note that no stress amplification is pos- 

sible in the shear-lag approach. The solution to Equa- 
tion 8, which is the tensile stress along the fibre 
together with the boundary conditions of(x = 0) 
= of(x = L) = 0 (boundary condition for a fibre with 

no end-face adhesion) for a fibre of length, L, is as 
follows for a three-dimensional system: 

Ef [ c o s h ~ ( x - L / 2 ) / r f ]  
of(x) = g ~ ~  1 -- cosh~L/2rf (9) 
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and 

I Em 11/2 
[3 = Ey(1 + vm)ln(R/rf) (10a) 

In two dimensions, the expression for the tensile stress 
is the same as given by Equation 9; however 

[ Em F 13 = 2Er(1 + v,o)(R/re - 1) (10b) 

The shear stress at the fibre-matrix interface for a 
three-dimensional system is obtained by using Equa- 
tions 7 and 9 

Ef [sinhl3(Xc~sh~_L/~rf- L/Z)/rf ] 
�9 ~(x) - 2EmCYmL (lla) 

and in two dimensions 

,, Ef gsinh13(x - L/2)/rf ] 
" ~ i ( X )  = PG~mL c--osh~/~-r~ (l lb) 

This work will make use of the following definition for 
the critical length, I c, commonly used experimentally 
[19-21]: let a system composed of a single fibre eva- 

�9 bedded in a matrix be strained until the occurrence of 
catastrophic failure. Failure will be initiated in the 
fibre if the fibre length L > lc; failure will be initiated 
in the matrix if the fibre length L < lc and for a fibre of 
length L = l~, failure occurs simultaneously in the 
fibre and in the matrix. We will explicitly incorporate 
information concerning the failure stress of the fibre 
(tensile regime: %(x = L/2) = gf* for L > l~) and the 
matrix into the equations of shear-lag theory with two 
different possible mechanisms of failure in mind for 
the matrix. 

1. Because stress transfer efficiency is not as large as 
low values of the ratio Ef/Em, one can expect that 
tensile stress builds up in the matrix, ultimately 
causing failure to be initiated in the matrix for a fibre 
of length L < Ic. 

2. The stress transfer efficiency increases as the 
value of El~Era increases. One therefore expects low 
levels of tensile stress in the matrix, but that the shear 
stresses generated at the fibre-matrix interface close to 
the fibre tips are now becoming large, hence should 
dominate the failure mechanism of a fibre of length 
L < l~. The important failure parameter for a fibre of 
length L < lr is z~(x = 0) = ~*,  the shear failure stress 
of the matrix. 

In order to calculate the critical aspect ratio for the 
first failure condition valid for low values of Ef/E m, we 
set the fibre length L = l~. The condition L = l~ en-~ 
ables us to replace simultaneously the stress in the 
fibre, ~f(x = L/2), and the  stress in the matrix, %, in 
Equation 9 by their respective breaking stress, cy/~ and 

* In our approach, the failure stress of the fibre and O" m , 

the matrix are energy controlled: c~* = (2E r Uf) 1/2 and 
~* = (2E m Urn) 1/2 where, for simplicity, we have used 
an harmonic approximation to obtain the cohesive 
energies, U= = ~/2E~.  Defining E = Ef/Em and 
U = Uf/U m, we obtain the following expression for 
the critical aspect ratio St = lr (where d is the fibre 
diameter) for an energy controlled failure criterion 
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1 i i  E ] ( 1 2 )  So = ~ c o s h -  )~_(UE)~/2 

which we will compare to the critical aspect ratio for a 
stress-controlled failure criterion 

S t = ~cosh-1  E -  cy o 

where cy0 = %/CYm = constant. Fig. 4a is a plot of 
Equations 12 and 13. Equation 12 possesses two 
interesting features. First, an energy failure criterion 
seems to cause the appearance of a minimum aspect 
ratio, which is not the case for Equation 9, i.e. in 
Equation 13 dS~/dEle=eo ~ 0 only for E o -+ oe. Fur- 
thermore, the critical aspect ratio given by Equation 
12 diverges at a low values of E and the asymptote is 
located at E = U while for E ~ oo it diverges as E 1/4. 
The critical aspect ratio given by Equation 13 diverges 
for E -- % but remains constant as E --* oe. In addi- 
tion, an energy failure criterion generates families of 
curves for different cohesive energy ratios, U, as 
shown on Fig. 4b, while the stress-controlled failure 
does not depend on the ratio U. 

We have obtained the critical aspect ratio by assum- 
ing that pure tensile failure occurred in the matrix 
(CY~ = (2EmUm)U2). Let us now obtain the critical as- 
pect ratio for the second failure mechanism where 
failure is dominated by the shear stresses at the 
fibre-matrix interface close to the fibre tips. We re- 
write the shear stress at the fibre end point in terms of 
the maximum fibre stress %(x = L/2) for a fibre of 
length 1 c = L with the help of Equations 9 a n d  1 la 

�9 ~(x = O) = ~" 

13 [ Sinh[3Sc 
= 2 Lcos-fi~, - 1 1 c~ (14a) 

and in two dimensions, with the help of Equation 1 lb 

~ ( x = 0 )  = ~* 

1 cosh---~-~ Z 1 ~* (14b) 

We substitute the following two expressions for the 
failure parameters of the matrix and the fibre into 
Equation 14a for a three-dimensional system: 
T* =-(2GmUm) U2, but ~* is still given by (2EfUf) 1/2 
and we obtain, after a few manipulations 

1 h_l[C + 1 q 
s0 ~ cos j (15) 

= L U g - i -  

In three dimensions [3 in Equation 15 is given by 
Equation 10a and 

C = 2 ln(R/rf) (16a) 
U 

In two dimensions, [3 in Equation 15 is given by 
Equation 10b and 

(R /re -  1) 
C = # 1 (16b) 

U 

Note that C r 1 because ln(R/rf) or R/rr>>l in the 
dilute limit and U > 1. Fig. 4c is a plot of Equation 15 
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an i sm ~* = c o n s t  a n d  ~*  = cons t  w h e r e  Sr is g iven  by  

F i g u r e 4  (a) Plot of the critical aspect ratio S~ as a function of 
E = El~Era. ( - - )  An energy-controlled failure criterion (tensile 
dominated regime), ( - - - )  a tensile stress failure criterion. (b) Plot of 
families of critical aspect ratio curves as a function of E = E f / E ~  in 
the case of an energy-controlled failure criterion (tensile dominated 
regime) for three values of the parameter U = U f / U ~  = 2 ( ), 

4 ( - - - )  and 6 ( .... ). (c) Plot of the critical aspect ratio, So, as a 
function of E = E f / E  m. ( ) An energy-controlled failure criterion 
(shear dominated regime), ( - - - )  a shear stress failure criterion. (d) 
Plot of families of critical aspect ratio curves as a function of 
E = E f / E ~  in the case of an energy-controlled failure criterion 
(shear dominated regime) for three values of the parameter 
U = U f / U  m = 2 ( ), 4 ( - - - )  and 6 (...). (e) Plot of the critical 
aspect ratio, S~, for an energy controlled failure criterion. (----)  The 
tensile-dominated regime, ( - - - )  the shear-dominated regime. The 
overall behaviour of St is obtained by deleting the lower branches 
(see Fig. 6c). 

E q u a t i o n  15 wi th  

( T *  ~ 2 
c -- (17) 

H e r e  aga in  [3 is g iven  by E q u a t i o n s  10a a n d  b for  three  

a n d  two  d imens ions ,  respect ive ly .  T h e  func t i ona l  de- 

p e n d e n c e  of  Sc in E q u a t i o n  15 wi th  respec t  to E for  E 
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large, is 

Sc ~ E1 /2  = (ef ~1/2 (18) 
\ E m J  

for an energy-controlled failure criterion in two and 
three dimensions, while for a tensile stress controlled 
criterion x*/cy* is a constant (Equation 15 together 
with Equation 17) gives Sc ~ constant as E increases. 
The critical aspect ratio decreases monotonically with 
the ratio of elastic moduli, E, in the case of a stress- 
controlled failure criterion (Equations 13 and 15 with 
Equation 17), because the expression for the stress in 
the fibre (Equation 9) predicted by shear-lag theory is 
an increasing function of E. The case of a tensile stress 
failure criterion is similar to the behaviour found for 
the critical aspect ratio when a tensile stress failure 
criterion (c~?/~* is a constant) was used (Equation 13). 
This similarity in behaviour makes sense intuitively: 
shear-lag theory predicts that the load-transfer effici- 
ency increases with E, the elastic modulus ratio and in 
the absence of stress concentration, as the stress re- 
quired to break the fibre or the matrix bonds remains 
constant as E increases, the critical length must con- 
sequently decrease. Fig. 4d illustrates families of 
curves obtained for an energy-controlled failure criter- 
ion using different ratios of cohesive energies, namely 
U = 2, 4 and 6. Fig. 4e illustrates the results obtained 
for an energy-controlled failure criterion with U = 2 
when the two failure mechanisms for the matrix envis- 
ioned in this work are considered, i.e. the critical 
length obtained when tensile failure occurs simultan- 
eously in the matrix and in the fibre (Equation 12) 
together with the critical length obtained when shear 
failure in the matrix occurs simultaneously with tensile 
failure in the fibre (Equation 15). The behaviour of the 
critical aspect ratio over the entire range of E f / E  m is 
obtained by selecting the upper branches of the tensile 
and shear failure curves in Fig. 4e. An example of the 
resulting theoretical curve for the critical aspect ratio 
is shown later in Fig. 6c. 

Note that the dimensionality introduces an ampli- 
tude difference (factor 1/2) in the expressions for zi(x), 
and 13, but does not alter the functional dependence of 
the critical length on E or U. 

3. The model 
In order to examine the validity of the above theoret- 
ical development in well-controlled ideal conditions, 
we resort to the use of computer simulations. The 
ultimate goal is to provide an understanding of the 
factors which influence the critical length in multi- 
fibre composites, hence the need to consider factors 
such as the volume fraction of fibre, interface charac- 
teristics and viscoelastic effect, among others. As a first 
step, we consider the dilute limit, i.e. one single fibre of 
thickness unity embedded in the matrix. The visco- 
elastic effects are neglected, which implies that the 
time scale over which the material is strained is short 
enough so the behaviour of the material is brittle (i.e. 
qm, TIf and qi = oo). This is certainly the case for 
epoxy/fibre glass system, for which much experimental 
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data is available [5]. In order to simplify the model 
further, we approximate the non-linear stress/strain 
behaviour found in real systems by a linear elastic 
behaviour, which is not expected to change the quali- 
tative trend of the results obtained. The interface 
considered is as simple and perfect as possible and 
possesses an elastic constant and a cohesive energy 
equal to those of the matrix. 

The model [22, 23] is not a microscopic, but rather 
a coarse-grained (i.e. continuum) spring model on a 
two-dimensional triangular lattice. The hamiltonian 
contains the usual two-body term, E~(r~ -- ro) 2 as well 
as a three-body term, c(cos0~g - c o s 0 J  

1 1 
H = -~E~ij  (rq - ro) 2 + 2C~qk (cosOqk -- cosOo) 2 

(19) 

where ~ = m (matrix), f (fibre) or i (interface), r o = 1 
and 0 o = re/3 are the equilibrium bond length and 
angle, and 0ij k is the angle between two adjacent bonds 
(i-j and i-k). The three-body term ensures stability of 
the model with respect to  shear and the three-body 
constant, c, is taken to be the same for the matrix, and 
the interface. In most of this paper, we choose 
c = Em/7, which yields a Poisson's ratio v = 0.1. Poly- 
mer matrices usually have a Poisson's ratio close to 
0.3, while glass has a Poisson's ratio close to 0.2. 
Because the fibre considered in the simulations is 
dimensionless, i.e. it consists of a single line of nodes, 
we assume it has a null Poisson's ratio. We must 
therefore give the matrix a Poisson's ratio of 0.1 in 
order to achieve the same relative Poisson's ratio 
v f -  V m found in real systems (for instance, glass/ 
epoxy). Results for other values of the matrix Poisson's 
ratio will be briefly discussed. The stresses generated 
by the above described model are consistent with the 
stresses generated by a boundary element analysis [24]. 
Periodic boundary conditions are applied in the direc- 
tion of tensile strain (x-axis) while free boundary 
conditions are applied in the direction perpendicular 
to the tensile strain (y-axis). The important feature in 
this work is the fracture criterion in which a bond is 
broken only if it accumulated an energy greater than 
its cohesive energy. The advantage of an energy criter- 
ion is that it does not restrict the failure mechanism 
strictly to pure tensile (or pure shear) failure [25]. The 
failure process is triggered by a combination of shear 
and tensile stresses, and this combination of stresses 
defines a fracture surface in stress space [5]. The 
failure mechanism is therefore allowed to vary con- 
tinuously with the ratio E f / E  m from a tensile stress 
failure regime, where the contribution of the tensile 
stress term to the energy is dominant to a shear stress 
failure regime, where the contribution of the shear 
stress term to the energy is dominant. An energy 
failure criterion is not artificial nor arbitrary, it is a 
generalized criterion for failure which encompasses 
the widely used stress criterion [4, 5, 26] and allows 
the two failure modes to compete against each other 
as the ratio of the elastic moduli Ef /Em is varied. 
Moreover, recent work [27] reinterpreting fibre pull- 
out experiments seems to suggest that failure of the 



interface between the matrix and the fibre is energy 
controlled. 

The algorithm utilizes a conjugate gradient method 
to relax the system to its minimal energy configuration 
and is therefore completely deterministic. The model 
possesses one more advantage: because of its coarse- 
grained nature, it allows one to study the onset of 
fracture from a macroscopic point of view, and there- 
fore should be very useful in studying crack propaga- 
tion in materials. 

4. Simulat ion results 
The critical length is measured using our model in 
the following way: a fibre of length l is placed at the 
centre of the triangular lattice and the system 
matrix(lattice)/fibre is strained until catastrophic fail: 
ure occurs. If the failure is initiated in the matrix, a 
new fibre of length l' > l is placed at the centre of the 
lattice and the experiment is repeated until failure is 
initiated in the fibre. At this point the length of the 
fibre is reduced and the experiment is repeated so as to 
narrow down the critical length between lengths ! and 
l + 1 such that for a fibre length of l, failure is initiated 
in the matrix and for a fibre length of I + 1 failure is 
initiated in the fibre as illustrated in Fig. 5. The critical 
length lc is given by I_+ 1. In our computer simu- 
lations, it is observed that the matrix bonds at the fibre 
ends always break well before catastrophic failure 
occurs. 

Because periodic boundary conditions are applied 
in the direction of tensile strain (x direction), one could 
expect finite size effects to play a significant role 
especially at large values of the ratio Ef/E~, where the 
stress and strain amplification at the fibre tips is large. 
Also, it is intuitively obvious that the loading proper- 
ties of a system consisting of a fibre embedded in a 
matrix depend on the quantity of matrix on either side 
of the fibre. For  the sake of meaningful comparisons, 
critical length measurements were done in the dilute 
limit, that is for systems with linear dimensions Lx and 
Ly large (typically L= = 300 and Ly = 50) so that 
increasing the lattice dimensions any further does 
not have any noticeable effect on the measured 
critical lengths. The values of ERIE,, lie between 

((~) (b) (c) 

/, ,-//+7 
(d) (e) (f) 

Figure 5 Illustration of the fracture morphology of a sub-critical 
fibre (a, b and c) and of a super-critical fibre (d, e and f). (a, d) The 
initial state of the system, i.e. when no strain is applied. (b, e) The 
system at some intermediate time, when the strain applied causes 
the bonds at the fibre ends to break. (c, f) The system at catastrophic 
failure. 

2 < Ef/E m < 100 which spans the range of both poly- 
mer and ceramic fibres [5, 28, 29]. For computational 
reasons, the values chosen for Uf/U m do not necessar- 
ily represent real systems. The elastic constants E~ and 
the cohesive energies U s are in units of GPa. 

Fig. 6a represents a linear plot of the measured 
critical length Ic versus the elastic moduli ratio Ef/E m 
for three different cohesive energies of the fibre, 
namely Uf = 0.003, 0.004 and 0.005. The matrix elastic 
constant E m and cohesive energy U m are kept at a 
value of 4.5 and 0.002, respectively, throughout this 
work. Measurements of critical aspect ratio with our 
model seem to confirm the presence of a minimum 
aspect ratio. We also show in the inset of Fig. 6a data 
for a fibre of thickness d = 3 as a check that this effect 
is not an artefact of a fibre of thickness unity. Fig. 6b is 
a log-log plot of the data in Fig. 6a for Ef>>E m. The 
measured slope is close to unity, in agreement with 
Termonia's results [16] and indicates that the critical 
aspect ratio varies linearly with the ratio Ef/E m. 
Fig. 6c is a plot of our results superimposed with both 
Equations 12 and 15 in two dimensions. We would 
like to point out that the expression R/rf in Equations 
12 and 15 was taken as a free parameter in this work in 
order to fit the data. The distance R is usually taken as 
half the fibre interspacing in multi-fibre composites, 
and it is assumed that R is the distance at which the 
strain in the matrix can be equated with the average 
tensile strain of the composite. The distance R is 
probably not a constant, but a function of the elastic 
moduli ratio and the cohesive energy. For  simplicity, 
we assumed that R = R(U) only in order to fit the data 
on Fig. 6c. The qualitative agreement of our data with 
the predicted aspect ratio is good: S~ diverges for both 
small and large values of Ef/Em. The upturn in the 
critical aspect ratio curve occurs at larger values of 
Ef/E~ as the ratio of cohesive energies is increased, 
consistent with the predicted asymptote value E = U. 
The value of the minimum aspect ratio increases as 
well as the value of E = Eo at which this minimum 
aspect ratio occurs for increasing values of the cohes- 
ive energy ratio U (compare also Fig. 6a with Fig. 4b). 
Our data seems to agree better with the shear failure 
condition, Equation 15, than with the tensile failure 
condition, Equation 12, for Ef>>E m. However, the 
overall quantitative agreement is poor: Sc varies as 
E 1/2 in Equation 15 but in our computer model Sc 
varies as E. This is to be expected considering the fact 
that Equation 15 is obtained from a shear failure 
mechanism of the interface in the proximity of fibre 
ends together with the inability of shear-lag theory to 
predict correctly shear stresses at the fibre tips. How- 
ever, if the function R(E, U) is taken to be approxim- 
ately constant for E < E o and to vary as E a/2 for 
E > Eo then the critical length obtained from Equa- 
tion 15 varies as E, in agreement with the model. Also, 
excellent quantitative agreement should not be ex- 
pected for low values [30] of E and many researchers 
have attributed this discrepancy to the neglect of stress 
transfer normal to the fibre ends. However, this dis- 
crepancy could also be due to the fact that as Ef --* Em, 
the assumption by shear-lag theory of a negligible 
tensile stress level in the matrix breaks down. This 
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a ssumpt ion  obviously should be valid only for large 

values of E. Also, as Ef --, E m, the assumpt ion  of small 
displacements might  break down. This assumpt ion  is 

implicitly present in the theory of elasticity and causes 

the expression for the stress transfer (i.e. Equat ions  6 
and  7) to be a l inear funct ion of the displacement  
difference u(x,  R)  - u(x,  rf). We plotted in Fig. 7 the 
critical aspect ratio for different values of the matr ix  
Poisson's  ratio. The results clearly show a strong 
dependence of the critical aspect ratio on the Poisson's  
ratio difference between the fibre and the matrix, 
especially at low values of the f ibre-matr ix  modulus  

ratio, E f / E  m, However,  the dependence of the critical 

aspect ratio, namely  Sc "~ E f / E m  a s  Ef /E  m increases 
oo is found to be independent  of the matr ix  Poisson's  

ratio, 

The m i n i m u m  encountered  in Fig. 6a is a t t r ibuted 
to two compet ing factors: the increased efficiency of 
load transfer to the fibre versus an increase in the 
shear stresses generated near  the fibre ends as the 
elastic modulus  of the fibre is increased. In  other 
words, we have increased the load shed from the 
matr ix  to the fibre bu t  we have also increased the 
shear stress generated on the bonds  forming the inter- 
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Figure 6 (a) Plot of the computer model results for the critical 
aspect ratio S~ versus E = El~Era for U = Uf/U,, = 1.5 (A), 2 (�9 
and 2.5 ([]). The lines have been added to help the eye and do not 
represent any fit to the data. The insert at the bottom right 
represents the critical aspect ratio for a fibre of diameter d = 2ao 
= 31/2 as a function ofE = El~Era, and a o = 3 1 / 2 / 2  is a unit length 

in the y direction. Note that the y-axis scale of the insert is in units of 
1/%. (b) Log-log plot of the critical aspect ratio for U = Uf/Um 
= 1.5 (A), 2 (0) and 2.5 ([Z) for values of E greater than 15. The 

lines do not represent any fit to the data. (c) Plot of the computer 
results for the critical aspect ratio versus E = Ef/Em together with 
the theoretical prediction in case of ( - - )  a tensile-dominated 
regime and ( - - - )  a shear-dominated regime for U = Uf/Um = 2. 
Note that R has been taken as a free parameter to fit the data. 
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Figure 7 Plot of the critical aspect ratio as a function of the 
fibre-matrix modulus ratio El~Era for various values of the matrix 
Poisson's ratio vm = 0.1428 (A), 0.1228 ([B), 0.1 (�9 0.0667 (&), 
0.0256 ( I )  and - 0.2381 (O). 

face near  the fibre ends, i.e. the shear stress on the 
matrix bonds  at the f ibre-matr ix  interface. As this 
stress becomes large, shear failure occurs prematurely  
in those bonds,  before the fibre can be loaded to its 
failure point.  



Fig. 8a shows the composite stress and strain, as 
well as the average fibre strain, at the composite failure 
point. All fibres have the same length, L = 27. These 
three quantities are monotonically decreasing with 
increasing elastic modulus ratio. This is a consequence 
of the fact that in the simulations, the toughness 
(cohesive energy) of the fibre (and not its strength), is 
kept constant. Therefore, the fibre average strain 
~f = ( 2 U f / E O  ~/2 decreases as the fibre elastic modulus, 
Ef (or equivalently the elastic modulus ratio), is in- 
creased, so that the material is increasingly brittle. 

Fig. 8b shows the composite stress at a fixed com- 
posite strain (% = 1.42%) as a function of elastic 
modulus ratio. As can be seen, the stress increases 
non-linearly with elastic modulus ratio. This is due to 
the fact that the fibre is carrying a larger stress as the 
elastic modulus ratio increases. The slight non-linear- 
ity is a departure from the linear dependence predicted 
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Figure8 (a) Plot of the composite strain, a c (&), the composite 
stress o c ([]) and the fibre average strain g:f (�9 as a function of 
E = Er/E m. All fibres have length L = 27 lattice constants. The 
solid lines do not represent a fit to the data. (b) Plot of the composite 
stress, oc, at constant composite strain, ar = 1.42%, as a function of 
E = Ef/E~ for fibres of length L = 27 lattice constants. The solid 
line does not represent a fit to the data. 

by the rule of mixtures [-2, 4, 5], and can be attributed 
to the change in load-transfer efficiency with modulus 
ratio. 

The tensile stress, o~ x, at a site i defined as 

o~{ x = ~ F i~.(xj - xi) (20) 
j e nbh (1) 

where j is one of the six neighbours of site i and F ~ is 
the x - c o m p o n e n t  of the force on i from j, is plotted 
versus the x-coordinate of the lattice site along the 
fibre in Fig. 9a. The tensile stress, ~ x ,  at site i is 
plotted versus the x-coordinate of the lattice sites 
along the row right below the fibre in Fig. 9b. The 
shear stress, cy~ x = cy~ y, at site i defined as 

o~ x = ~ ,  F ~ ( x j  - x~) (21) 
j ~ nbh (i) 

where F~'j is the y-component  of the force on from j, 
is plotted versus the x-coordinate of the lattice 
sites along the row below the fibre in Fig. 9c. The 
x-coordinates on Fig. 9a have been labelled as follows. 
The ten first sites on the row along the fibre and 
labelled 1-10 represent the matrix sites to the left of 
the fibre, the next 27 sites, labelled 11-37, represent the 
fibre itself and the last 10 sites, labelled 38-47, repre- 
sent matrix sites to the right of the fibre. The 
x-coordinates on Fig. 9b and c are labelled 1-47, and 
represent matrix sites in the row below the fibre. The 
data on Fig. 9a-c  are for fibres of elastic modulus 
Ef = 15, 70 and 140, and cohesive energy Uf = 0.004. 
The length of the fibres is kept constant, L = 27, and is 
sub-critical for Er = 15 and 140, while it is super- 
critical for E r = 70. One should note that the stress 
measurements in Fig. 9a-c  were taken just before the 
occurrence of catastrophic failure of the composite 
and that the stress at a given site, which involves a sum 
over the site neighbouring bonds should not be con- 
fused with the stress in a single bond. 

We make the following observations from Fig. 9a. 
1. The fibre load increases with increasing fibre 

elastic modulus (or elastic modulus ratio) which indi- 
cates that the fibre is stronger as its elastic modulus is 
increased. This is consistent with allowing a bond to 
break according to a constant fibre cohesive energy, 
rather than according to a constant (tensile or shear) 
failure stress. 

2. The stress level in the matrix on each side of the 
fibre decreases as the fibre elastic modulus is in- 
creased, in agreement with the observed decreasing 
composite strain at failure of the composite. This is 
again consistent with breaking bonds according to a 
constant fibre cohesive energy. 

Fig. 9b yields the following observations. 
1. Again, the stress level in the matrix to the right 

and left of the fibre is decreased as the fibre elastic 
modulus is increased but in addition, one can observe 
large stress amplification at the sites below (sites 11 
and 38) and above (by symmetry; sites 10 and 37) the 
fibre-end points. Such stress concentration is not 
taken into account by shear-lag theory. 

2. The stress level at those sites is a mixture of stress 
from bonds stretched in tensile (i.e. b l - b 4  in Fig. 10) 
and in shear (i.e. b5-b8 in Fig. 10) and is about the 
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s a m e  for all  th ree  sys tems  s h o w n  on  Fig.  9b because  

t hose  sys tems  are  c lose to  failure. 

3. T h e  stress in the  m a t r i x  a b o v e  a n d  b e l o w  the  

f ibre  is r e d u c e d  as the  f ibre e las t ic  m o d u l u s  is in-  

Figure 9 (a) Plot of the tensile stress along the fibre versus the x 
coordinate of the lattice sites along the fibre. Coordinates 1 10 
represents the 10 matrix sites to the left of the fibre. Coordinates 
11-37 represents the fibre sites, and coordinates 38-47 represent the 
10 matrix sites to the right of the fibre (see also Fig. 10 and caption). 
The data are taken for fibres of length L = 27 and elastic modulus 
Ef = 15 (----), 70 ~ - - )  and 140 (...) for a cohesive energy ratio 
U = 2, The units of stress are 1/2N GPa where N is the total 
number of sites. (b) Plot of the tensile stress along the row of matrix 
sites below the fibre. Coordinates 1-47 represent matrix sites below 
the fibre (see also Fig. 10 and caption). (c) Plot of the shear stress 
along the row of matrix sites below the fibre. 

creased,  i nd i ca t i ng  be t t e r  l o a d  t ransfer  wi th  inc reas ing  

elast ic  m o d u l u s  ra t io .  

Fig.  9c shows  c lear ly  tha t  the  shear  stresses at  sites 

11 a n d  38 increase  as the  f ibre e las t ic  m o d u l u s  ra t io  

increases .  

T h e  d a t a  p r o v i d e  an  u n d e r s t a n d i n g  of  the  n a t u r e  of  

the  t r ans i t i on  of  fa i lure  m e c h a n i s m  by  exp la in ing  w h y  

the  f ibre length ,  L = 27, is sub-cr i t ica l  for  Ef = 15, 

super -c r i t i ca l  for Ef = 70 a n d  b e c o m e s  sub-cr i t ica l  

aga in  for Ef = 140 in spi te  of  inc reas ing ly  be t t e r  l o a d  

t ransfer  to  the  fibre. Th is  is because  a c o n s t a n t  f ibre 

- V - V  

10 11 12 13 14 35  36 37 38 39 

�9 : Mat r ix  Si te  

�9 : F ibre  Si te  

= = : In tact  B o n d  

: Broken  B o n d  

Figure 10 Schematic illustration of the fibre tips (the three first and the three last sites) as well as the rows of matrix sites immediately above 
and below the fibre. The numbers represent the labels given to the x coordinate of the sites described in Fig. 9. Bonds bl, b2, b3 and b4 are 
stretched in tensile while bonds b5, b6, b7 and b8 are stretched in shear. A cross on a bond indicates the bond is already broken. The wiggly 
line indicates that the central part of the fibre (remaining 21 sites for a fibre of length L = 27) and the matrix sites above and below are missing. 
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cohesive energy implies that the stress at failure in- 
creases with the fibre elastic modulus, El. Moreover, 
at low elastic modulus ratio, the failure mechanism is 
dominated by tensile stress amplification: the contri- 
bution of bonds b l -b4  (see Fig. 10) to the tensile stress 
level at sites 11 and 38 shown in Fig. 9b is dominant. 
This is consistent with the fact the tensile stress in the 
matrix itself is already high. At higher elastic modulus 
ratio, the tensile stress level in the matrix is low, 
because as we pointed out earlier, the composite strain 
is decreasing. From Fig. 9c one can infer that the 
failure mechanism is dominated by shear stress ampli- 
fication: the tensile stress level at sites 11 and 38 no 
longer come from bonds bl -b4,  but must come from 
the bonds stretched in shear, i.e. b5-b8 on Fig. 10. The 
minimum seen in Fig. 6a is the boundary between the 
two failure regimes. This cross-over from a tensile- 
regime failure to a shear-regime failure is also seen in 
the fracture of brittle materials with random defects 
[25] as the defect density increases. 

Because the above measurements presented in 
Fig. 9a-c are made close to the failure point of the 
composite, i.e. at different composite strains for differ- 
ent values of fibre elastic moduli we show, for pur- 
poses of comparison, the tensile stress along the fibre 
(Fig. 1 la), the tensile stress along the row below the 

Gxx 

1.5 

1 

0.5 

0 
0 10 

(oJ 

./ 'El = 140",, 

�9 / C f  = 70 \ 
/ /  
// 
// 
// 
J/ 

E f = 1 5  

I 

2O 
X 

\ i  

I I , _ _  

30 40 50 

0.4 

OXX 

0.3 

0.2 

0.1 

0.0 

(b) 

~ _ ~ = 1 5  

~. E, = 70 i 

I _ _  I I I 

11 21 31 41 

X 

fibre (Fig. l lb)  and the shear stress along the row 
below the fibre (Fig. l lc) again for fibres of elastic 
modulus Ef = 15, 70 and 140 and length L = 27 at 
constant composite strain % = 1.42%. The same gen- 
eral behaviour and trends as discussed above for 
Fig. 9a-c are found, but are more pronounced: the 
load shed to the fibre, the tensile and shear stress 
concentration at constant composite strain are now 
far greater for the stiffer fibre, g f  -~ 140, when com- 
pared to the softer fibres, Ef = 15 and 70. 

5.  D i s c u s s i o n  a n d  c o n c l u s i o n  
We studied the load transfer in short fibre composites 
in the dilute limit as a function of the ratio of the 
elastic modulus of the fibre to the matrix E = Ef/E~n 
and as a function of the ratio of the cohesive energy of 
the fibre to the matrix U = Uf/Um via an energy 
criterion for failure. We performed computer simu- 
lations on systems consisting of a single fibre of thick- 
ness unity in a matrix (dilute limit) in the elastic brittle 
regime. A minimum critical aspect ratio was found, 
which appears to be a function of the cohesive energy 
ratio, U. The minimum critical aspect ratio found is 
attributed to a compromise between a greater effici- 
ency in load transfer to the fibre as E increases and the 
amplitude of the shear stresses generated at the fibre 
ends which causes the matrix to break prematurely. A 
qualitative theoretical account for this effect was 
found in terms of equations for tensile and shear 
stresses given by the shear-lag theory. The functional 
dependence of the critical aspect ratio is obtained 
separately for low values of E by balancing a tensile 
failure criterion for the fibre with a tensile failure 
criterion for the matrix and for large values of E by 
balancing the same failure criterion for the fibre with a 
shear failure criterion for the matrix. In spite of the 

Figure 11 (a) Plot of the tensile stress along the fibre at a constant  
composite strain e~ = 1.42%. See caption for Fig. 9 above. (b) Plot 
of the tensile stress along tile row of matrix sites below the fibre at 
constant  composite strain zc = 1.42%. See caption for Fig. 9 above. 
(c) Plot of the shear stress along the row of matrix sites below the 
fibre at constant  composite strain, e~ = 1.42%. See caption for 
Fig. 9 above. 
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good qualitative agreement found, the poor quantitat- 
ive agreement found between the predicted values of 
critical aspect ratio from the shear lag theory and the 
results of the model is not surprising, considering the 
assumptions of shear-lag theory compared to the 
computer model. Shear-lag theory does not account 
for stress concentration at the fibre tips and does not 
predict the shear stress amplitude correctly. This is 
obviously not the case in the computer model where 
large stress concentration can be seen at the fibre-end 
points. Also, the theoretical expression for the critical 
aspect ratio obtained in shear-lag theory is derived for 
two extreme cases of matrix failure: 

1. pure tensile failure criterion U m = ~2m/2Em, and 
2. pure shear failure criterion Um = "c~/2Gm. 

In the model, we expect Case 1 to be valid for values of 
E close to unity, and Case 2 to be valid for large values 
of E. However, for intermediate values of E, neither 
Case 1 nor Case 2 is expected to apply, as the energy in 
a matrix bond at the fibre-matrix interface is given by 
U m = [A(~Z /2Em)]  + [B('c~/2Gm)], where the exact 
value of the weights A and B is not known. Pre- 
sumably, for those intermediate values of E, A ~- B, 
while Case 1 is for A >>B and Case 2 is for A << B. 

The divergence in the critical aspect ratio at E = U 
found in this work can be explained in physical terms. 
A fibre of elastic modulus Er = Em U will reach its 
breaking energy together with the matrix only for a 
fibre of infinite length. If Ef > EmU, the condition of 
simultaneous breaking will be satisfied for a fibre of 
finite length. However, Ef < EmU represents the "for- 
bidden region", where the condition of simultaneous 
breaking can never be reached. One can imagine the 
case of Ef = Era,  with U~ > Um. While the stress and 
energy level is the same everywhere, the matrix will 
always break first because it possesses a smaller cohes- 
ive energy. The occurrence of the divergence in the 
critical aspect ratio at low elastic modulus ratio has 
significance for the prediction of this quantity in metal 
and ceramic matrix composites. In these materials the 
critical aspect ratio is usually estimated as [4, 5] 
S~ oc of/Zm where ~* is the breaking stress of the fibre 
and r* is usually related to the yield stress for a metal 
matrix and to the interfacial strength for a ceramic 
matrix. As discussed above, the conventional ap- 
proach neglects the change in loading efficiency as the 
elastic modulus of the fibre is varied. The loading 
efficiency decreases as the elastic modulus of the fibre 
approaches the matrix, resulting in an increase in the 
fibre length needed to achieve maximum stress trans- 
fer. While the results of this paper concern 
elastic/brittle materials only, it is nevertheless ex- 
pected that because ceramic fibres and matrices have 
moduli in the range of 500 GPa and higher [28, 29], 
and metal matrices have moduli in the range of 
150 GPa [31], the critical aspect ratio for these com- 
posites will be larger than the classical estimate. 

The results of this work, namely that the divergence 
of the aspect ratio for low value of E is followed by a 
minimum whose location is a function of the ratio of 
the cohesive energies, could possibly account for the 
scatter of the data reported by Asloun et al. [18]. If, in 
fact, critical aspect ratio is indeed a function of the 
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ratio of cohesive energies as well as of the ratio of 
elastic moduli, this extra parameter can account for 
the difference between thermosets/thermoplastics and 
elastomeric matrices found by Asloun et al. (see Fig. 2). 
Elastomeric matrices are known to be tougher than 
thermosetting or thermoplastic matrices [32]. Fig. 4b 
clearly indicates that the critical length decreases with 
a decreasing value of the ratio of cohesive energies of 
the fibre and the matrix, U. Furthermore, this extra 
parameter also suggests that it may not always be 
appropriate to compare one experimental system to 
another as was done in the work of Asloun et al. 

The results of Asloun et al. indicate that the critical 
lengths measured vary as E 1/2 for E large, in disagree- 
ment with Termonia [16, 17] and this work, where the 
critical length varies as E. The difference can be 
explained by the fact that our model and Termonia's 
assume a perfect elastic regime. In an experimental 
situation, the stress concentration might not be as 
high as it would be for a matrix with perfect elastic 
behaviour due to viscoelastic interactions (creep) or 
plasticity. Hence future work will study in particular 
the effect of viscoelastic interactions on the critical 
aspect ratio before undertaking the study of multi- 
fibre systems with interface characteristics. 
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